论文标题

在高雷诺数字上缩放腐烂的湍流

Scaling in Decaying Turbulence at High Reynolds Numbers

论文作者

Küchler, Christian, Bodenschatz, Eberhard, Bewley, Gregory P.

论文摘要

增量尺寸的湍流速度波动尺度的增量统计数据是湍流理论的核心。我们报告了最大Planck可变密度湍流隧道(VDTT)中腐烂的湍流的数据,该数据显示了惯性范围统计量在小尺度上朝着非平凡形状的方法。通过使用模型纠正能源衰减对大规模统计的贡献,我们发现二阶速度增量统计数据的缩放指数独立于雷诺数,等于$ 0.693 \ pm0.003 $,价格为$ 2000 \ lyssimr_λ\ lyssim 6000 $。这是高雷诺数在高雷诺数处的普遍惯性范围的证据。

The way the increment statistics of turbulent velocity fluctuations scale with the increment size is a centerpiece of turbulence theories. We report data on decaying turbulence in the Max Planck Variable Density Turbulence Tunnel (VDTT), which show an approach of the inertial range statistics toward a nontrivial shape at small scales. By correcting for the contributions of energy decay to the large-scale statistics with a model, we find the scaling exponent of the second-order velocity increment statistics to be independent of the Reynolds number and equal to $0.693\pm0.003$ for $2000\lesssim R_λ \lesssim 6000$. This is evidence of a universal inertial range at high Reynolds numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源