论文标题
RIESZ-纤维分数量子谐波振荡器的分解
Factorization of the Riesz-Feller fractional quantum harmonic oscillators
论文作者
论文摘要
使用Riesz-Feller分数衍生物,我们沿着Olivar-Romero和Rosas-Ortiz先前提出的线将分数化算法应用于分数量子谐波振荡器,从而扩大了结果。我们通过在该空间中引入新的Hermite“多项式”,我们称之为Riesz-Feller Hermite hermite'polyenmials',我们解决了K空间中的非弱分数特征值问题。还使用Mathematica中的逆傅里叶变换,还获得了X空间中相同特征值问题的有趣分析结果。此外,简要介绍了具有两个不同征收指数的更一般的分解
Using the Riesz-Feller fractional derivative, we apply the factorization algorithm to the fractional quantum harmonic oscillator along the lines previously proposed by Olivar-Romero and Rosas-Ortiz, extending their results. We solve the non-Hermitian fractional eigenvalue problem in the k space by introducing in that space a new class of Hermite `polynomials' that we call Riesz-Feller Hermite `polynomials'. Using the inverse Fourier transform in Mathematica, interesting analytic results for the same eigenvalue problem in the x space are also obtained. Additionally, a more general factorization with two different Levy indices is briefly introduced