论文标题
Senwave:监视Covid-19大流行下的全球情绪
SenWave: Monitoring the Global Sentiments under the COVID-19 Pandemic
论文作者
论文摘要
自从世界卫生组织(2020年1月5日)发起的第一个警报以来,Covid-19已传播到180多个国家和地区。截至2020年6月18日,总共有超过8,400,000例和450,000例相关死亡。这会在全球经济和工作中造成巨大的损失,并占地约58%的全球人口。在本文中,我们介绍了Senwave,这是一项新型的感性分析工作,使用了1.5万次收集的推文和微博信息,以评估Covid-19-19-19大流行期间情感的全球兴起和下降。为了对我们面对这场全球健康危机的感觉进行精细的分析,我们在10个类别中注释了10k英语推文和10k推文,包括乐观,感恩,同情心,悲观,悲观,焦虑,悲伤,烦恼,烦恼,否认,官方报告和笑话。然后,我们利用一个称为SimpleTransFormer的集成变压器框架来通过在标记的数据上微调预训练的语言模型来进行多标签情感分类。同时,为了进行更完整的分析,我们还将注释的英语推文转换为不同的语言(西班牙语,意大利语和法语),以生成培训数据,以构建这些语言的情感分析模型。因此,随着流行病的传播,Senwave揭示了有关Covid-19的六种不同语言(涵盖英语,西班牙语,法语,意大利语,阿拉伯语和中文)的六种不同语言的情感。对话显示,随着时间的流逝,所有国家以及诸如群豁免策略之类的特殊主题的快速上升和缓慢下降的模式非常相似,全球对话对此做出了强烈的反应。总体而言,Senwave表明,随着时间的流逝,乐观和积极的情绪增加了,预言了寻求共同改善的Covid-19世界的渴望。
Since the first alert launched by the World Health Organization (5 January, 2020), COVID-19 has been spreading out to over 180 countries and territories. As of June 18, 2020, in total, there are now over 8,400,000 cases and over 450,000 related deaths. This causes massive losses in the economy and jobs globally and confining about 58% of the global population. In this paper, we introduce SenWave, a novel sentimental analysis work using 105+ million collected tweets and Weibo messages to evaluate the global rise and falls of sentiments during the COVID-19 pandemic. To make a fine-grained analysis on the feeling when we face this global health crisis, we annotate 10K tweets in English and 10K tweets in Arabic in 10 categories, including optimistic, thankful, empathetic, pessimistic, anxious, sad, annoyed, denial, official report, and joking. We then utilize an integrated transformer framework, called simpletransformer, to conduct multi-label sentimental classification by fine-tuning the pre-trained language model on the labeled data. Meanwhile, in order for a more complete analysis, we also translate the annotated English tweets into different languages (Spanish, Italian, and French) to generated training data for building sentiment analysis models for these languages. SenWave thus reveals the sentiment of global conversation in six different languages on COVID-19 (covering English, Spanish, French, Italian, Arabic and Chinese), followed the spread of the epidemic. The conversation showed a remarkably similar pattern of rapid rise and slow decline over time across all nations, as well as on special topics like the herd immunity strategies, to which the global conversation reacts strongly negatively. Overall, SenWave shows that optimistic and positive sentiments increased over time, foretelling a desire to seek, together, a reset for an improved COVID-19 world.