论文标题
金属碳纳米管量子点与对称性破裂,作为可调terahertz检测的平台
Metallic Carbon Nanotube Quantum Dots with Broken Symmetries as a Platform for Tunable Terahertz Detection
论文作者
论文摘要
由于缺乏有效的来源和检测器,在所谓的Terahertz Gap($ 0.1-10 $ THZ)的技术相关范围内产生和检测辐射是具有挑战性的。碳纳米管中的量子点已经显示出巨大的潜力,通常基于光子辅助隧道构建敏感的Terahertz探测器。最近报道的一种结合了谐振量子点过渡和隧道障碍的机制,在弱Thz辐射下,狭窄的线宽光电流响应与较大的信噪比导致狭窄的线宽光电流响应。该设备对一个频率敏感,对应于等距量化状态之间的过渡。在这项工作中,我们展示了使用数值以及扫描隧穿光谱研究研究缺陷诱导的金属曲折的单壁碳纳米管量子点,这些量子量子点同时破坏了金属纳米管中的各种对称性,在任意chirality的金属纳米管量子点中,任意型的量子量强烈放松了电型二极管的选择规则,并且在电力型二极管近似能量中进行了差异。这导致了一组更丰富的允许的光学转换,跨越了从1 THz到几十THz的频率,以$ \ sim $ 10 nm的量子点。基于这些发现,我们提出了一个基于金属单壁碳纳米管量子点的Terahertz探测器装置,该量子点由人造缺陷定义。根据其长度并接触透明度,操作机制的范围从高分辨率的门 - 可调Terahertz传感器到宽带Terahertz检测器。我们的计算表明,该设备在很大程度上不受高达100 K的温度影响,这使碳纳米管量子点与破碎的对称性成为一个有前途的平台,用于设计可调节的Terahertz探测器,可以在液氮温度下运行。
Generating and detecting radiation in the technologically relevant range of the so-called terahertz gap ($0.1 - 10$ THz) is challenging because of a lack of efficient sources and detectors. Quantum dots in carbon nanotubes have shown great potential to build sensitive terahertz detectors usually based on photon-assisted tunnelling. A recently reported mechanism combining resonant quantum dot transitions and tunnelling barriers asymmetries results in a narrow linewidth photocurrent response with a large signal-to-noise ratio under weak THz radiation. That device was sensitive to one frequency, corresponding to transitions between equidistant quantized states. In this work we show, using numerical together with scanning tunnelling spectroscopy studies of a defect-induced metallic zigzag single-walled carbon nanotube quantum dot that simultaneously breaking various symmetries in metallic nanotube quantum dots of arbitrary chirality strongly relaxes the selection rules in the electric dipole approximation, and removes energy degeneracies. This leads to a richer set of allowed optical transitions spanning frequencies from 1 THz to several tens of THz, for a $\sim$10 nm quantum dot. Based on these findings, we propose a terahertz detector device based on a metallic single-walled carbon nanotube quantum dot defined by artificial defects. Depending on its length and contacts transparency, the operating regimes range from a high-resolution gate-tunable terahertz sensor to a broadband terahertz detector. Our calculations indicate that the device is largely unaffected by temperatures up to 100 K, making carbon nanotube quantum dots with broken symmetries a promising platform to design tunable terahertz detectors that could operate at liquid nitrogen temperatures.