论文标题

学会在复发的生物网络中推断

Learning to infer in recurrent biological networks

论文作者

Benjamin, Ari S., Kording, Konrad P.

论文摘要

一种流行的知觉处理理论认为,大脑既学会世界的生成模型,又是使用变分贝叶斯推断的配对识别模型。大脑如何学习这些模型的大多数假设都假设人群中的神经元在有条件地独立,因为它们的共同投入。这种简化可能与大脑中观察到的局部复发类型不兼容。寻求一种与复杂的相互依赖性兼容但与已知生物学一致的替代方案,我们在这里认为皮层可以通过对抗性算法学习。这种方法的许多可观察的症状都类似于已知的神经现象,包括唤醒/睡眠周期和振荡的大小随着惊人的影响而变化,我们描述了如何测试进一步的预测。我们说明了对经过训练的图像和视频数据集进行训练的复发神经网络的想法。这种学习的框架使变异推理更接近神经科学,并产生多个可检验的假设。

A popular theory of perceptual processing holds that the brain learns both a generative model of the world and a paired recognition model using variational Bayesian inference. Most hypotheses of how the brain might learn these models assume that neurons in a population are conditionally independent given their common inputs. This simplification is likely not compatible with the type of local recurrence observed in the brain. Seeking an alternative that is compatible with complex inter-dependencies yet consistent with known biology, we argue here that the cortex may learn with an adversarial algorithm. Many observable symptoms of this approach would resemble known neural phenomena, including wake/sleep cycles and oscillations that vary in magnitude with surprise, and we describe how further predictions could be tested. We illustrate the idea on recurrent neural networks trained to model image and video datasets. This framework for learning brings variational inference closer to neuroscience and yields multiple testable hypotheses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源