论文标题
跟踪自旋波动的足迹:二维Hubbard模型的多途径,多通电者研究
Tracking the Footprints of Spin Fluctuations: A MultiMethod, MultiMessenger Study of the Two-Dimensional Hubbard Model
论文作者
论文摘要
哈伯德模型代表了相互作用的量子系统和电子相关性的基本模型。使用弱耦合处的二维半填充的哈伯德模型作为测试地面,我们对一组全面的量子多体方法进行了比较研究。在冷却其绝缘抗铁磁地面状态后,该模型将拥有丰富的不同物理状态的序列,在高温不相互的状态,中间温度金属状态和低温绝缘状态之间具有跨界,并具有由抗抗磁力磁性波动产生的pseudoGAP。我们通过计算几种可观察到的Quasiparticle特性和磁相关性的可观察结果来评估每种方法正确解决这些物理方案和交叉的能力,并使用两种数值精确的方法(图和确定性量子carlo)用作基准。通过结合计算结果和分析见解,我们阐明了在每个制度中自旋波动的性质和作用。基于此分析,我们解释了准粒子如何与越来越长的抗铁磁相关性共存,以及为什么发现动态平均场理论可以在金属状态下提供非常准确的局部数量近似值。我们还批判性地讨论了虚构的时间方法是否能够捕获该完全嵌套系统的非fermi液体奇异性。
The Hubbard model represents the fundamental model for interacting quantum systems and electronic correlations. Using the two-dimensional half-filled Hubbard model at weak coupling as a testing ground, we perform a comparative study of a comprehensive set of state of the art quantum many-body methods. Upon cooling into its insulating antiferromagnetic ground-state, the model hosts a rich sequence of distinct physical regimes with crossovers between a high-temperature incoherent regime, an intermediate temperature metallic regime and a low-temperature insulating regime with a pseudogap created by antiferromagnetic fluctuations. We assess the ability of each method to properly address these physical regimes and crossovers through the computation of several observables probing both quasiparticle properties and magnetic correlations, with two numerically exact methods (diagrammatic and determinantal quantum Monte Carlo) serving as a benchmark. By combining computational results and analytical insights, we elucidate the nature and role of spin fluctuations in each of these regimes. Based on this analysis, we explain how quasiparticles can coexist with increasingly long-range antiferromagnetic correlations, and why dynamical mean-field theory is found to provide a remarkably accurate approximation of local quantities in the metallic regime. We also critically discuss whether imaginary time methods are able to capture the non-Fermi liquid singularities of this fully nested system.