论文标题

自旋加权球形CNN

Spin-Weighted Spherical CNNs

论文作者

Esteves, Carlos, Makadia, Ameesh, Daniilidis, Kostas

论文摘要

学习模棱两可的表示是减少样本和建模复杂性并改善深神经网络的概括性能的一种有希望的方法。球形CNN是成功的示例,因此产生了球形输入的(3)等级表示。球形CNN有两种主要类型。第一种类型将输入提高到旋转组上的功能(3),并在该组上应用卷积,因为(3)具有一个额外的维度,因此计算昂贵。第二种类型的卷积直接应用于球体,该球体仅限于区域(各向同性)过滤器,因此具有有限的表达性。在本文中,我们提出了一种新型的球形CNN,该球形CNN允许以有效的方式进行各向异性过滤器,而无需离开球形域。关键思想是考虑重力加权的球形功能,这些球函数是在重力波研究中引入的。这些是在旋转时相变的球上的复杂值函数。我们定义了自旋加权函数之间的卷积,并基于它构建CNN。自旋加权功能也可以解释为球形矢量场,从而使应用程序到输入或输出为矢量字段的任务。实验表明,我们的方法表现优于以前的方法,例如球形图像的分类,3D形状的分类和球形全景的语义分割。

Learning equivariant representations is a promising way to reduce sample and model complexity and improve the generalization performance of deep neural networks. The spherical CNNs are successful examples, producing SO(3)-equivariant representations of spherical inputs. There are two main types of spherical CNNs. The first type lifts the inputs to functions on the rotation group SO(3) and applies convolutions on the group, which are computationally expensive since SO(3) has one extra dimension. The second type applies convolutions directly on the sphere, which are limited to zonal (isotropic) filters, and thus have limited expressivity. In this paper, we present a new type of spherical CNN that allows anisotropic filters in an efficient way, without ever leaving the spherical domain. The key idea is to consider spin-weighted spherical functions, which were introduced in physics in the study of gravitational waves. These are complex-valued functions on the sphere whose phases change upon rotation. We define a convolution between spin-weighted functions and build a CNN based on it. The spin-weighted functions can also be interpreted as spherical vector fields, allowing applications to tasks where the inputs or outputs are vector fields. Experiments show that our method outperforms previous methods on tasks like classification of spherical images, classification of 3D shapes and semantic segmentation of spherical panoramas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源