论文标题

使用常识知识图的零射学习

Zero-Shot Learning with Common Sense Knowledge Graphs

论文作者

Nayak, Nihal V., Bach, Stephen H.

论文摘要

零拍的学习依赖于语义类表示,例如手工设计的属性或学习的嵌入方式来预测类,而无需任何标记的示例。我们建议通过嵌入矢量空间中的常识知识图中的节点来学习班级表示。常识知识图是未开发的明确高级知识的来源,几乎不需要人力来应用于一系列任务。为了捕获图中的知识,我们引入了ZSL-KG,这是一种具有新型变压器图卷积网络(TRGCN)的通用框架,用于生成类表示。我们提出的TRGCN体系结构计算节点社区的非线性组合。我们的结果表明,ZSL-KG在语言和视觉中的六个零击基准数据集中的五个基于WordNet的方法中改进了基于WordNet的方法。

Zero-shot learning relies on semantic class representations such as hand-engineered attributes or learned embeddings to predict classes without any labeled examples. We propose to learn class representations by embedding nodes from common sense knowledge graphs in a vector space. Common sense knowledge graphs are an untapped source of explicit high-level knowledge that requires little human effort to apply to a range of tasks. To capture the knowledge in the graph, we introduce ZSL-KG, a general-purpose framework with a novel transformer graph convolutional network (TrGCN) for generating class representations. Our proposed TrGCN architecture computes non-linear combinations of node neighbourhoods. Our results show that ZSL-KG improves over existing WordNet-based methods on five out of six zero-shot benchmark datasets in language and vision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源