论文标题
在Denjoy-Carleman类中吹干功能的尖锐估计值
Sharp Estimates for Blowing Down Functions in a Denjoy-Carleman Class
论文作者
论文摘要
如果f是一个无限可分化的函数,其与吹吹架的组成属于denjoy-Carleman类C_M(由log conevex序列m =(m_k)确定),则通常F通常属于较大移位的C_N类,其中n_k = m_2k;即,有规律性丧失。我们表明,这种规律性的丧失是敏锐的。特别是,Denjoy-Carleman类的规律性丧失是涉及解决奇异性的论点的固有的。
If F is an infinitely differentiable function whose composition with a blowing-up belongs to a Denjoy-Carleman class C_M (determined by a log convex sequence M=(M_k)), then F, in general, belongs to a larger shifted class C_N, where N_k = M_2k; i.e., there is a loss of regularity. We show that this loss of regularity is sharp. In particular, loss of regularity of Denjoy-Carleman classes is intrinsic to arguments involving resolution of singularities.