论文标题

Reenactnet:实时全面重演

ReenactNet: Real-time Full Head Reenactment

论文作者

Koujan, Mohammad Rami, Doukas, Michail Christos, Roussos, Anastasios, Zafeiriou, Stefanos

论文摘要

视频对视频综合是一个具有挑战性的问题,旨在学习一系列语义图和描述驾驶视频特征的照片真实视频之间的翻译功能。我们提出了一个自己实施的头对头系统,能够将人头3D姿势,面部表情和眼睛注视从源到目标参与者的目的,同时保留目标参与者的身份。我们的系统产生了高保真,时间平滑和照片现实的合成视频,忠实地将人类时变的头部属性从源头转移到了目标演员。我们提出的实施:1)实时工作($ \ sim 20 $ fps),2)在具有网络摄像头的商品笔记本电脑上运行,作为唯一的输入,3)是互动的,允许参与者驾驶目标人员,例如。名人,政治家等,立即改变了他们的表情,姿势和眼睛的目光,并同时可视化综合视频。

Video-to-video synthesis is a challenging problem aiming at learning a translation function between a sequence of semantic maps and a photo-realistic video depicting the characteristics of a driving video. We propose a head-to-head system of our own implementation capable of fully transferring the human head 3D pose, facial expressions and eye gaze from a source to a target actor, while preserving the identity of the target actor. Our system produces high-fidelity, temporally-smooth and photo-realistic synthetic videos faithfully transferring the human time-varying head attributes from the source to the target actor. Our proposed implementation: 1) works in real time ($\sim 20$ fps), 2) runs on a commodity laptop with a webcam as the only input, 3) is interactive, allowing the participant to drive a target person, e.g. a celebrity, politician, etc, instantly by varying their expressions, head pose, and eye gaze, and visualising the synthesised video concurrently.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源