论文标题

反应扩散方程的平滑效果和无限的时间爆炸:通过Sobolev和Poincaré不平等的方法

Smoothing effects and infinite time blowup for reaction-diffusion equations: an approach via Sobolev and Poincaré inequalities

论文作者

Grillo, Gabriele, Meglioli, Giulia, Punzo, Fabio

论文摘要

我们考虑在Riemannian歧管上或欧几里得加权环境中摆放的反应扩散方程,具有POW \ -ER型非线性和多孔中期多孔的扩散。我们考虑了特别精致的案例$ p <m $问题(1.1),即使初始基准是平滑且紧凑的,这一案例在[21]中也很大程度上打开了。我们证明了l $^m $数据的全局存在,并且进化的平滑效果,即,与此类数据相对应的解决方案在所有正时有限,并在其l $^\ infty $ norm上进行定量绑定。由于这一事实和[21]的结果,因此,在两个严格的负极常数之间捏合曲率的cartan-hadamard歧管上,解决方案对应于足够大的l $^m $数据,这引起了无限时间中无处不在的解决方案,这一事实没有euclideaneaneplogue。平滑效果的证明方法具有功能性分析性,因为它们仅取决于Sobolev不平等的有效性,以及$ m $上的l $^2 $ spectrum $ unt $Δ$的$^2 $ spectrum a $ m $的界限(即,在$ m $上的PoinCaré不平等的有效性上)。因此,它们适用于不同的情况,其中我们在欧几里得环境中挑选了(质量)加权反应扩散方程的情况。在后一种情况下,[37]方法的修改还可以在大量时与全球整合权重的情况下更强大的结果。

We consider reaction-diffusion equations either posed on Riemannian manifolds or in the Euclidean weighted setting, with pow\-er-type nonlinearity and slow diffusion of porous medium time. We consider the particularly delicate case $p<m$ in problem (1.1), a case largely left open in [21] even when the initial datum is smooth and compactly supported. We prove global existence for L$^m$ data, and a smoothing effect for the evolution, i.e. that solutions corresponding to such data are bounded at all positive times with a quantitative bound on their L$^\infty$ norm. As a consequence of this fact and of a result of [21], it follows that on Cartan-Hadamard manifolds with curvature pinched between two strictly negative constants, solutions corresponding to sufficiently large L$^m$ data give rise to solutions that blow up pointwise everywhere in infinite time, a fact that has no Euclidean analogue. The methods of proof of the smoothing effect are functional analytic in character, as they depend solely on the validity of the Sobolev inequality and on the fact that the L$^2$ spectrum of $Δ$ on $M$ is bounded away from zero (namely on the validity of a Poincaré inequality on $M$). As such, they are applicable to different situations, among which we single out the case of (mass) weighted reaction-diffusion equation in the Euclidean setting. In this latter setting, a modification of the methods of [37] allows to deal also, with stronger results for large times, with the case of globally integrable weights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源