论文标题

关于Unital代数的Pi exponents

On existence of PI-exponents of unital algebras

论文作者

Repovš, Dušan D., Zaicev, Mikhail V.

论文摘要

我们构建了一个Unital非相关代数$ \ {t_α\ vert〜2 <α\ in \ Mathbb r \} $,这样$ \ useverline {exp}(t_α)= 2 $,而$ \ useverline {exp} = 2 $特别是,因此,对于任何$α> 2 $,代数$t_α$的consimension增长的普通Pi epponent均不存在。这是一个Unital代数的第一个示例,其pi exponent不存在。

We construct a family of unital non-associative algebras $\{T_α\vert~ 2<α\in\mathbb R\}$ such that $\underline{exp}(T_α)=2$, whereas $α\le\overline{exp}(T_α)\leα+1$. In particular, it follows that ordinary PI-exponent of codimension growth of algebra $T_α$ does not exist for any $α> 2$. This is the first example of a unital algebra whose PI-exponent does not exist.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源