论文标题

具有保证的非线性系统识别的积极学习

Active Learning for Nonlinear System Identification with Guarantees

论文作者

Mania, Horia, Jordan, Michael I., Recht, Benjamin

论文摘要

虽然非线性动力学系统的识别是基于模型的强化学习和反馈控制的基本构建块,但仅针对具有离散状态和动作的系统或可以从I.I.D. I.I.D产生的数据中识别的系统,才能理解其样本复杂性。随机输入。但是,许多有趣的动态系统具有连续的状态和行动,只能通过明智的投入选择来识别。在实际环境中,我们研究了一类非线性动力学系统,其状态转换线性地取决于已知的状态嵌入状态对。要在有限的时间识别方法中估算此类系统,必须探索特征空间中的所有方向。我们提出了一种主动学习方法,通过重复三个步骤来实现这一目标:轨迹计划,轨迹跟踪和从所有可用数据中重新估计系统。我们表明,我们的方法以参数速率估算非线性动力学系统,类似于标准线性回归的统计速率。

While the identification of nonlinear dynamical systems is a fundamental building block of model-based reinforcement learning and feedback control, its sample complexity is only understood for systems that either have discrete states and actions or for systems that can be identified from data generated by i.i.d. random inputs. Nonetheless, many interesting dynamical systems have continuous states and actions and can only be identified through a judicious choice of inputs. Motivated by practical settings, we study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs. To estimate such systems in finite time identification methods must explore all directions in feature space. We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data. We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源