论文标题

吊坠下张力计:一种机器学习方法

Pendant Drop Tensiometry: A Machine Learning Approach

论文作者

Kratz, Felix, Kierfeld, Jan

论文摘要

现代的吊坠滴张力计依赖于年轻宽段方程的数值解决方案,并允许从高精度的吊坠滴的单个图片中确定表面张力。这些技术中的大多数都多次求解了年轻的拉普拉斯方程,以找到为所提供的真实液滴图像提供拟合的材料参数。在这里,我们介绍了一种机器学习方法,以更有效的方式解决此问题。我们训练一个深神网络,使用大型训练液滴形状的训练组确定给定液滴形状的表面张力。我们表明,深度学习方法优于速度和精确度的当前状态状态,特别是如果训练集中的形状反映了液滴形状相对于表面张力的敏感性。为了获得这样的优化训练集,我们阐明了沃辛顿数字作为常规形状拟合和机器学习方法中质量指标的作用。我们的方法证明了深度神经网络在材料参数测定中的能力,从一般而言,从流变学变形实验中。

Modern pendant drop tensiometry relies on numerical solution of the Young-Laplace equation and allow to determine the surface tension from a single picture of a pendant drop with high precision. Most of these techniques solve the Young-Laplace equation many times over to find the material parameters that provide a fit to a supplied image of a real droplet. Here we introduce a machine learning approach to solve this problem in a computationally more efficient way. We train a deep neural network to determine the surface tension of a given droplet shape using a large training set of numerically generated droplet shapes. We show that the deep learning approach is superior to the current state of the art shape fitting approach in speed and precision, in particular if shapes in the training set reflect the sensitivity of the droplet shape with respect to surface tension. In order to derive such an optimized training set we clarify the role of the Worthington number as quality indicator in conventional shape fitting and in the machine learning approach. Our approach demonstrates the capabilities of deep neural networks in the material parameter determination from rheological deformation experiments in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源