论文标题

自旋极化超导率:顺序参数拓扑,电流耗散和多周期约瑟夫森效应

Spin-polarized superconductivity: order parameter topology, current dissipation, and multiple-period Josephson effect

论文作者

Cornfeld, Eyal, Rudner, Mark S., Berg, Erez

论文摘要

我们讨论了完全自旋的三胞胎超导体的传输性能,其中仅配对一个自旋组分(沿特定轴)的电子。由于顺序参数空间的结构,其中相位和旋转旋转是交织在一起的,因此在空间上,超导相风的配置在拓扑上与没有相位绕组的配置相等。这通过对顺序参数的平滑变形来打开超电流放松的可能性,在整个过程中,阶参数在空间的任何点上保持不零。在此过程中,形成了自旋纹理。我们讨论了这种过程发生的条件及其身体后果。特别是,我们表明,当使用电压时,它们会导致不寻常的交替流动的约瑟夫森效应,其周期是通常的约瑟夫森时期的整数倍数。这些结论在一个简单的时间依赖性的金茨堡 - 兰道模型中得到证实,用于订购参数的动力学。我们分析的潜在应用之一是用于Moiré系统,例如扭曲的双层和双双层石墨烯,在铁磁性附近发现了超导性。

We discuss transport properties of fully spin-polarized triplet superconductors, where only electrons of one spin component (along a certain axis) are paired. Due to the structure of the order parameter space, wherein phase and spin rotations are intertwined, a configuration where the superconducting phase winds by $4π$ in space is topologically equivalent to a configuration with no phase winding. This opens the possibility of supercurrent relaxation by a smooth deformation of the order parameter, where the order parameter remains non-zero at any point in space throughout the entire process. During the process, a spin texture is formed. We discuss the conditions for such processes to occur and their physical consequences. In particular, we show that when a voltage is applied, they lead to an unusual alternating-current Josephson effect whose period is an integer multiple of the usual Josephson period. These conclusions are substantiated in a simple time-dependent Ginzburg-Landau model for the dynamics of the order parameter. One of the potential applications of our analysis is for moiré systems, such as twisted bilayer and double bilayer graphene, where superconductivity is found in the vicinity of ferromagnetism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源