论文标题
使用复制核的稳健持续图
Robust Persistence Diagrams using Reproducing Kernels
论文作者
论文摘要
持续的同源性已成为从数据中提取几何和拓扑特征的重要工具,该数据的多尺度特征在持久图中总结了。但是,从统计的角度来看,持续图对输入空间中的扰动非常敏感。在这项工作中,我们开发了一个框架,用于从使用再现核构建的稳健密度估计器的超级过滤构建坚固的持久图。使用对持久图空间的影响函数的类似物,我们建立了提出的框架对异常值不太敏感。稳健的持久图显示为瓶颈距离的一致估计器,其收敛速率由内核的平滑度控制。反过来,这使我们能够在持久图的空间中构造统一的置信带。最后,我们证明了基准数据集中提出的方法的优势。
Persistent homology has become an important tool for extracting geometric and topological features from data, whose multi-scale features are summarized in a persistence diagram. From a statistical perspective, however, persistence diagrams are very sensitive to perturbations in the input space. In this work, we develop a framework for constructing robust persistence diagrams from superlevel filtrations of robust density estimators constructed using reproducing kernels. Using an analogue of the influence function on the space of persistence diagrams, we establish the proposed framework to be less sensitive to outliers. The robust persistence diagrams are shown to be consistent estimators in bottleneck distance, with the convergence rate controlled by the smoothness of the kernel. This, in turn, allows us to construct uniform confidence bands in the space of persistence diagrams. Finally, we demonstrate the superiority of the proposed approach on benchmark datasets.