论文标题
频谱在$ ϕ^4 $ - 频谱dse的理论中起作用
Spectral functions in the $ϕ^4$-theory from the spectral DSE
论文作者
论文摘要
我们开发了一个非扰动功能框架,用于计算强相关系统中的实时相关函数。该框架基于相关函数和尺寸正则化的光谱表示。因此,此处的非扰动光谱恢复范围化设置尊重当前理论的所有对称性。特别是这包括时空对称性以及内部对称性,例如手性对称性和量规对称性。光谱重量级化可以应用于一般功能方法中,例如功能性重态化组,dyson-schinginger方程以及两或$ n $零件不可约的方法。作为一个应用程序,我们计算$ ϕ^4 $ - 理论中标量字段的完整,非扰动,光谱函数,$ 2+1 $ dyson dyson-schwinger方程。我们还计算了该理论中完整$ ϕ^4 $ -VERTEX的$ S $通道光谱功能。
We develop a non-perturbative functional framework for computing real-time correlation functions in strongly correlated systems. The framework is based on the spectral representation of correlation functions and dimensional regularisation. Therefore, the non-perturbative spectral renormalisation setup here respects all symmetries of the theories at hand. In particular this includes space-time symmetries as well as internal symmetries such as chiral symmetry, and gauge symmetries. Spectral renormalisation can be applied within general functional approaches such as the functional renormalisation group, Dyson-Schwinger equations, and two- or $n$-particle irreducible approaches. As an application we compute the full, non-perturbative, spectral function of the scalar field in the $ϕ^4$-theory in $2+1$ dimensions from spectral Dyson-Schwinger equations. We also compute the $s$-channel spectral function of the full $ϕ^4$-vertex in this theory.