论文标题
相对论恒星的转折点原理
Turning point principle for relativistic stars
论文作者
论文摘要
指定状态方程后,将爱因斯坦 - 欧拉尔系统的球形对称稳态嵌入到1参数溶液中,其特征在于其中央红移的值。在1960年代的Zel'Dovich [50]和Wheeler [22]中,提出了一个转折点原理,该原理指出,光谱稳定性可以与不稳定交换,仅在Mass-Radius曲线的质量极端上交换。此外,极端的弯曲方向决定是否获得或丢失了生长模式。我们证明了转折点原理,并提供了线性化动力学的详细描述。我们结果的推论之一是,随着中央红移的增加,增长模式的数量已增长到无穷大。
Upon specifying an equation of state, spherically symmetric steady states of the Einstein-Euler system are embedded in 1-parameter families of solutions, characterized by the value of their central redshift. In the 1960's Zel'dovich [50] and Wheeler [22] formulated a turning point principle which states that the spectral stability can be exchanged to instability and vice versa only at the extrema of mass along the mass-radius curve. Moreover the bending orientation at the extrema determines whether a growing mode is gained or lost. We prove the turning point principle and provide a detailed description of the linearized dynamics. One of the corollaries of our result is that the number of growing modes grows to infinity as the central redshift increases to infinity.