论文标题
神经各向异性方向
Neural Anisotropy Directions
论文作者
论文摘要
在这项工作中,我们分析了网络体系结构在塑造深层分类器的归纳偏见中的作用。为此,我们首先要关注一个非常简单的问题,即对一类线性可分离的分布进行分类,并表明,根据分布的区分特征的方向,许多最新的深度卷积神经网络(CNN)都很难解决这项简单的任务。然后,我们将其定义为神经各向异性方向(NADS),封装了建筑的定向电感偏置的向量。这些向量是针对每个体系结构的特定的,因此作为签名,它编码网络的偏好,以根据某些特定功能分离输入数据。我们提供了一种有效的方法来识别几种CNN体系结构的NAD,从而揭示了它们的定向电感偏见。此外,我们表明,对于CIFAR-10数据集,NADS表征了CNN用于区分不同类别的功能。
In this work, we analyze the role of the network architecture in shaping the inductive bias of deep classifiers. To that end, we start by focusing on a very simple problem, i.e., classifying a class of linearly separable distributions, and show that, depending on the direction of the discriminative feature of the distribution, many state-of-the-art deep convolutional neural networks (CNNs) have a surprisingly hard time solving this simple task. We then define as neural anisotropy directions (NADs) the vectors that encapsulate the directional inductive bias of an architecture. These vectors, which are specific for each architecture and hence act as a signature, encode the preference of a network to separate the input data based on some particular features. We provide an efficient method to identify NADs for several CNN architectures and thus reveal their directional inductive biases. Furthermore, we show that, for the CIFAR-10 dataset, NADs characterize the features used by CNNs to discriminate between different classes.