论文标题

多-UAV继电器的3D放置:迭代的吉布斯采样和块坐标下降优化方法

3D Placement for Multi-UAV Relaying: An Iterative Gibbs-Sampling and Block Coordinate Descent Optimization Approach

论文作者

Kang, Zhenyu, You, Changsheng, Zhang, Rui

论文摘要

在本文中,我们考虑了启用无人机(UAV)的无人机继电器系统,其中将多个无人机作为空中继电器部署,以支持从一组源节点到地面上的目的地节点的同时通信。在实用的渠道模型下提出了优化问题,以最大化所有对地面节点的最低预期速率,共同设计无人机的三维(3D)放置以及带翼和功率分配。但是,这个问题是非凸面,因此难以解决。因此,我们提出了一种新方法,称为迭代Gibbs-Smplimpling和Block坐标 - 散发性(IGS-BCD),通过协同确定性(BCD)和随机(GS)优化方法的优势来有效地获得高质量的次优溶液。具体而言,我们提出的方法在两个优化阶段之间交替,直到达到收敛,即,一个阶段使用BCD方法来查找本地最佳的无人机的3D放置,而另一个阶段则利用GS方法生成新的无人机的3D放置进行探索。此外,我们提出了一种有效的方法,可以正确初始化无人机的放置,从而导致提出的IGS-BCD算法更快地收敛。数值结果表明,所提出的IGS-BCD和初始化方法在收敛性和绩效权衡以及其他基准方案方面仅优于常规BCD或GS方法。

In this paper, we consider an unmanned aerial vehicle (UAV) enabled relaying system where multiple UAVs are deployed as aerial relays to support simultaneous communications from a set of source nodes to their destination nodes on the ground. An optimization problem is formulated under practical channel models to maximize the minimum achievable expected rate among all pairs of ground nodes by jointly designing UAVs' three-dimensional (3D) placement as well as the bandwidth-and-power allocation. This problem, however, is non-convex and thus difficult to solve. As such, we propose a new method, called iterative Gibbs-sampling and block-coordinate-descent (IGS-BCD), to efficiently obtain a high-quality suboptimal solution by synergizing the advantages of both the deterministic (BCD) and stochastic (GS) optimization methods. Specifically, our proposed method alternates between two optimization phases until convergence is reached, namely, one phase that uses the BCD method to find locally-optimal UAVs' 3D placement and the other phase that leverages the GS method to generate new UAVs' 3D placement for exploration. Moreover, we present an efficient method for properly initializing UAVs' placement that leads to faster convergence of the proposed IGS-BCD algorithm. Numerical results show that the proposed IGS-BCD and initialization methods outperform the conventional BCD or GS method alone in terms of convergence-and-performance trade-off, as well as other benchmark schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源