论文标题

视觉异常检测的自我监督的表示学习

Self-Supervised Representation Learning for Visual Anomaly Detection

论文作者

Ali, Rabia, Khan, Muhammad Umar Karim, Kyung, Chong Min

论文摘要

自我监督的学习允许更好地利用未标记的数据。通过自我统计获得的特征表示可以用于下游任务,例如分类,对象检测,分割和异常检测。尽管已经通过自学学习进行了分类,对象检测和细分的研究,但异常检测需要更多的关注。我们考虑图像和视频中异常检测的问题,并为视频提供了新的视觉异常检测技术。评估了许多图像数据集上的许多开创性和最先进的自我监督方法,以进行异常检测。然后,最佳性能基于图像的自我监督表示方法用于视频异常检测,以查看视频中空间特征在视觉异常检测中的重要性。我们还提出了一种简单的自学方法,用于在不使用任何光流信息的情况下学习视频帧的时间连贯性。从本质上讲,我们的方法确定了混乱的视频序列的框架索引,从而可以学习视频的时空特征。与UCF101和ILSVRC2015视频数据集上的许多图像和视频相比,这种直观的方法显示了视觉异常检测的出色性能。

Self-supervised learning allows for better utilization of unlabelled data. The feature representation obtained by self-supervision can be used in downstream tasks such as classification, object detection, segmentation, and anomaly detection. While classification, object detection, and segmentation have been investigated with self-supervised learning, anomaly detection needs more attention. We consider the problem of anomaly detection in images and videos, and present a new visual anomaly detection technique for videos. Numerous seminal and state-of-the-art self-supervised methods are evaluated for anomaly detection on a variety of image datasets. The best performing image-based self-supervised representation learning method is then used for video anomaly detection to see the importance of spatial features in visual anomaly detection in videos. We also propose a simple self-supervision approach for learning temporal coherence across video frames without the use of any optical flow information. At its core, our method identifies the frame indices of a jumbled video sequence allowing it to learn the spatiotemporal features of the video. This intuitive approach shows superior performance of visual anomaly detection compared to numerous methods for images and videos on UCF101 and ILSVRC2015 video datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源