论文标题

细粒的随机建筑搜索

Fine-Grained Stochastic Architecture Search

论文作者

Chaudhuri, Shraman Ray, Eban, Elad, Li, Hanhan, Moroz, Max, Movshovitz-Attias, Yair

论文摘要

最先进的深网通常太大,无法在移动设备和嵌入式系统上部署。移动神经架构搜索(NAS)方法可自动化小型型号的设计,但最先进的NAS方法运行昂贵。可区分的神经体系结构搜索(DNAS)方法降低了搜索成本,但探索了有限的候选架构子空间。在本文中,我们介绍了细粒的随机体系结构搜索(FIGS),这是一种可区分的搜索方法,可在更大的候选架构集上进行搜索。无花果通过基于逻辑 - sigmoid分布应用结构化稀疏的正则惩罚,同时选择并修改搜索空间中的运算符。我们显示了3个现有搜索空间的结果,匹配或胜过原始搜索算法并在ImageNet上产生最先进的参数效率模型(例如,具有2.60万参数的75.4%TOP-1)。使用我们的体系结构作为骨干进行对象检测,我们在可可(例如25.8 params params)上获得的地图明显高于mobilenetv3和mnasnet。

State-of-the-art deep networks are often too large to deploy on mobile devices and embedded systems. Mobile neural architecture search (NAS) methods automate the design of small models but state-of-the-art NAS methods are expensive to run. Differentiable neural architecture search (DNAS) methods reduce the search cost but explore a limited subspace of candidate architectures. In this paper, we introduce Fine-Grained Stochastic Architecture Search (FiGS), a differentiable search method that searches over a much larger set of candidate architectures. FiGS simultaneously selects and modifies operators in the search space by applying a structured sparse regularization penalty based on the Logistic-Sigmoid distribution. We show results across 3 existing search spaces, matching or outperforming the original search algorithms and producing state-of-the-art parameter-efficient models on ImageNet (e.g., 75.4% top-1 with 2.6M params). Using our architectures as backbones for object detection with SSDLite, we achieve significantly higher mAP on COCO (e.g., 25.8 with 3.0M params) than MobileNetV3 and MnasNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源