论文标题

大气湍流中的积雪颗粒的沉降和聚类

Settling and Clustering of Snow Particles in Atmospheric Turbulence

论文作者

Li, Cheng, Lim, Kaeul, Berk, Tim, Abraham, Aliza, Heisel, Michael, Guala, Michele, Coletti, Filippo, Hong, Jiarong

论文摘要

湍流对降雪的影响未纳入当前天气预测模型。在这里,我们证明了湍流实际上是对降落雪的跌倒速度和空间分布的关键影响。我们认为在大气湍流差异很大的情况下,我们考虑了三个降雪事件。我们表征了雪颗粒的大小和形态,并同时对其垂直平面的速度,加速度和相对浓度进行成像,该面积约为30平方米。我们发现,湍流驱动的沉降增强解释了粒径和速度之间的矛盾趋势。 Stokes数量的估计值以及垂直速度和局部浓度之间的相关性表明增强的沉降植根于优先扫描机制。与特征性的湍流速度相比,雪垂直速度很大时,交叉轨迹会影响强大的加速度。当满足优先扫描的条件时,浓度场是高度均匀的,聚类会在较宽的尺度上出现。这些簇是在天然出现的流动中首次识别的,显示了在规范设置中看到的签名特征:幂律尺寸分布,分形的形状,垂直伸长和较大的秋季速度,随着群集大小而增加。这些发现表明,可以利用充满颗粒的湍流的基本现象学来更好地预测积雪和地面积雪。他们还证明了如何使用环境流来研究在实验室实验或数值模拟中无法访问的雷诺数的分散多相流。

The effect of turbulence on snow precipitation is not incorporated into present weather forecasting models. Here we show evidence that turbulence is in fact a key influence on both fall speed and spatial distribution of settling snow. We consider three snowfall events under vastly different levels of atmospheric turbulence. We characterize the size and morphology of the snow particles, and we simultaneously image their velocity, acceleration, and relative concentration over vertical planes about 30 m2 in area. We find that turbulence-driven settling enhancement explains otherwise contradictory trends between the particle size and velocity. The estimates of the Stokes number and the correlation between vertical velocity and local concentration indicate that the enhanced settling is rooted in the preferential sweeping mechanism. When the snow vertical velocity is large compared to the characteristic turbulence velocity, the crossing trajectories effect results in strong accelerations. When the conditions of preferential sweeping are met, the concentration field is highly non-uniform and clustering appears over a wide range of scales. These clusters, identified for the first time in a naturally occurring flow, display the signature features seen in canonical settings: power-law size distribution, fractal-like shape, vertical elongation, and large fall speed that increases with the cluster size. These findings demonstrate that the fundamental phenomenology of particle-laden turbulence can be leveraged towards a better predictive understanding of snow precipitation and ground snow accumulation. They also demonstrate how environmental flows can be used to investigate dispersed multiphase flows at Reynolds numbers not accessible in laboratory experiments or numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源