论文标题

对非共同环的主要子模块的概括

Generalizations of prime submodules over non-commutative rings

论文作者

Ugurlu, Emel Aslankarayigit

论文摘要

在整个本文中,$ r $是具有身份的协会戒指(不一定是可交换的),而$ m $是带有统一的$ r $ $ module。在本文中,我们在具有身份的关联戒指上引入了$ ϕ $ prime子模块的新概念。因此,我们将概念定义如下:假设$ s(m)$是$ m $和$ ϕ的所有子模型的集合:s(m)\ rightarrow s(m)\ cup \ {\ emptyset \} $是一个函数。对于s(m)$和理想$ i $ r的每$ y \,$ a $ a $ x $ x $ $ m $的$ x $ $ m $称为$ ϕ $ - prime,如果$ yi \ yi \ subseteq x $和$ yi \ yi \ nsubseteeq(x),$ y \ y \ y \ y \ y \ subseteq x $ i \ i \ i \ subseteq(x;然后,我们检查$ ϕ $ - prime子模块的属性,并在$ m $是乘法模块时对其进行表征。

Throughout this paper, $R$ is an associative ring (not necessarily commutative) with identity and $M$ is a right $R$-module with unitary. In this paper, we introduce a new concept of $ϕ$-prime submodule over an associative ring with identity. Thus we define the concept as following: Assume that $S(M)$ is the set of all submodules of $M$ and $ϕ:S(M)\rightarrow S(M)\cup\{\emptyset\}$ is a function. For every $Y\in S(M)$ and ideal $I$ of $R,$ a proper submodule $X$ of $M$ is called $ϕ$-prime, if $YI\subseteq X$ and $YI\nsubseteqϕ(X),$ then $Y\subseteq X$ or $I\subseteq(X:_{R}M)$. Then we examine the properties of $ϕ$-prime submodules and characterize it when $M$ is a multiplication module.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源