论文标题
关于散射相渐近值的列文森定理的概括
A generalization of the Levinson theorem about the asymptotic value of the scattering phase shift
论文作者
论文摘要
在量子散射理论中,存在阈值和无穷大的散射相移之间的关系,而列维森定理建立的结合状态数量之间存在关系。 Castillejo,Dalitz和Dyson Poles在散射幅度中的存在,以及Jaffe和低原语,对应于单一切割的零d $功能,修改了列文森定理。散射相移的渐近值表明是由结合状态的数量,Castillejo,Dalitz和Dyson Poles的数量以及原始数量确定的。讨论了广义定理在核子核子相互作用的性质方面的某些后果。
In quantum scattering theory, there exists a relationship between the difference in the scattering phase shifts at threshold and infinity and the number of bound states, which is established by the Levinson theorem. The presence of Castillejo, Dalitz and Dyson poles in the scattering amplitude, as well as Jaffe and Low primitives, corresponding to zeros of $D$ function on the unitary cut, modify the Levinson theorem. The asymptotic value of the scattering phase shift is shown to be determined by the number of bound states, the number of Castillejo, Dalitz and Dyson poles, and the number of primitives. Some consequences of the generalized theorem with respect to properties of nucleon-nucleon interactions are discussed.