论文标题

通过深层神经网络框架揭示降解系统行为的潜在物理学:保持使用寿命预后的情况

Uncovering the Underlying Physics of Degrading System Behavior Through a Deep Neural Network Framework: The Case of Remaining Useful Life Prognosis

论文作者

Cofre-Martel, Sergio, Droguett, Enrique Lopez, Modarres, Mohammad

论文摘要

深度学习(DL)已成为预后和健康管理(PHM)的重要工具,通常用作系统行为预后的回归算法。感兴趣的一个特殊指标是使用监视传感器数据估计的剩余有用寿命(RUL)。这些深度学习应用程序中的大多数将算法视为黑框函数,几乎无法控制数据解释。如果没有施加限制,模型打破了物理学法律或其他自然科学法则,这将成为一个问题。最新的研究工作重点是应用复杂的DL模型来达到低预测错误,而不是研究模型如何解释数据的行为和系统本身。在本文中,我们提出了一种使用深神网络框架的开放式方法,通过偏微分方程(PDE)探索降解物理。该框架有三个阶段,其目的是发现一个潜在变量和相应的PDE来代表系统的健康状态。模型是作为监督回归训练的,旨在输出RUL以及可以用作系统的健康指标的潜在变量图。

Deep learning (DL) has become an essential tool in prognosis and health management (PHM), commonly used as a regression algorithm for the prognosis of a system's behavior. One particular metric of interest is the remaining useful life (RUL) estimated using monitoring sensor data. Most of these deep learning applications treat the algorithms as black-box functions, giving little to no control of the data interpretation. This becomes an issue if the models break the governing laws of physics or other natural sciences when no constraints are imposed. The latest research efforts have focused on applying complex DL models to achieve a low prediction error rather than studying how the models interpret the behavior of the data and the system itself. In this paper, we propose an open-box approach using a deep neural network framework to explore the physics of degradation through partial differential equations (PDEs). The framework has three stages, and it aims to discover a latent variable and corresponding PDE to represent the health state of the system. Models are trained as a supervised regression and designed to output the RUL as well as a latent variable map that can be used and interpreted as the system's health indicator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源