论文标题

霍姆长的Dimodule类别和非线性方程

The Hom-Long dimodule category and nonlinear equations

论文作者

Wang, Shengxiang, Zhang, Xiaohui, Guo, Shuangjian

论文摘要

在本文中,我们在两个hom-hopf algerbas $(h,α)$和$(b,β)$上构建了一种新的编织单体类别,并将其与两个非线性方程相关联。我们首先介绍$(H,b)$ - hom-hong dimodule的概念,并表明hom-long dimodule类别$^{b} _ {h} \ bbb l $是自主类别。其次,我们证明,如果$(h,α)$是quasitriangular,则类别$^{b} _ {h} \ bbb l $是一个编织的单体类别,而$(b,β)$是共夸氏ianguarl,并获得量子yang-yang-baxter-barbar-barbar-barbar-barbar-barbar-barbare。另外,我们表明类别$^{b} _ {h} \ bbb l $可以看作是hom-yetter-drinfeld类别的子类别$^{høb} _ {høb} _ {høb} \ bbb \ bbb {hyd} $。最后,我们从HOM长的Dimodules获得了Hom长方程的溶液。

In this paper, we construct a kind of new braided monoidal category over two Hom-Hopf algerbas $(H,α)$ and $(B,β)$ and associate it with two nonlinear equations. We first introduce the notion of an $(H,B)$-Hom-Long dimodule and show that the Hom-Long dimodule category $^{B}_{H} \Bbb L$ is an autonomous category. Second, we prove that the category $^{B}_{H} \Bbb L$ is a braided monoidal category if $(H,α)$ is quasitriangular and $(B,β)$ is coquasitriangular and get a solution of the quantum Yang-Baxter equation. Also, we show that the category $^{B}_{H} \Bbb L$ can be viewed as a subcategory of the Hom-Yetter-Drinfeld category $^{HøB}_{HøB} \Bbb {HYD}$. Finally, we obtain a solution of the Hom-Long equation from the Hom-Long dimodules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源