论文标题

运动的密集非刚性结构:一种多种观点

Dense Non-Rigid Structure from Motion: A Manifold Viewpoint

论文作者

Kumar, Suryansh, Van Gool, Luc, de Oliveira, Carlos E. P., Cherian, Anoop, Dai, Yuchao, Li, Hongdong

论文摘要

非刚性结构从动作(NRSFM)问题旨在从跨多个帧的2D特征对应关系中恢复变形对象的3D几何形状。解决此问题的经典方法假设了少量特征点,并且忽略了形状变形的局部非线性,因此努力可靠地模拟非线性变形。此外,可用的致密NRSFM算法通常会被可伸缩性,计算,噪声测量值所刺激,并且仅限于仅模拟全局变形。在本文中,我们提出的算法可以通过先前的方法克服这些局限性,同时可以以更高的精度恢复非刚性对象的可靠的3D结构。假设变形形状由局部线性子空间的结合组成,并且在多个帧上跨越全局的低级空间,使我们能够有效地对复杂的非刚性变形进行建模。为此,每个局部线性子空间都使用法曼尼人表示,并且使用低级别表示表示跨多个帧的全局3D形状。我们表明,我们的方法显着提高了针对噪声的准确性,可扩展性和鲁棒性。同样,我们的表示自然允许同时重建和聚类框架,通常观察到更适合NRSFM问题。我们的方法目前在标准基准数据集上实现领先的性能。

Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames. Classical approaches to this problem assume a small number of feature points and, ignore the local non-linearities of the shape deformation, and therefore, struggles to reliably model non-linear deformations. Furthermore, available dense NRSfM algorithms are often hurdled by scalability, computations, noisy measurements and, restricted to model just global deformation. In this paper, we propose algorithms that can overcome these limitations with the previous methods and, at the same time, can recover a reliable dense 3D structure of a non-rigid object with higher accuracy. Assuming that a deforming shape is composed of a union of local linear subspace and, span a global low-rank space over multiple frames enables us to efficiently model complex non-rigid deformations. To that end, each local linear subspace is represented using Grassmannians and, the global 3D shape across multiple frames is represented using a low-rank representation. We show that our approach significantly improves accuracy, scalability, and robustness against noise. Also, our representation naturally allows for simultaneous reconstruction and clustering framework which in general is observed to be more suitable for NRSfM problems. Our method currently achieves leading performance on the standard benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源