论文标题

图形歧管任意接纳许多Anosov流动

Graph manifolds that admit arbitrarily many Anosov flows

论文作者

Clay, Adam, Pinsky, Tali

论文摘要

对于每个自然数n,我们构建了一个图形歧管的示例,该示例至少支持非等效轨道的n不同的Anosov流动。我们的构造让人想起瑟斯顿汉德尔的结构:我们在恒定负曲率的表面上切成了两个片段的大地测量流,通过向后拉回有限的盖子来修改每一部分的流量,然后将兼容的回溯流胶合在一起,以在其边界摩托车上沿边界托架,以在所得的图形上获得许多独特的流。

For each natural number n, we construct an example of a graph manifold supporting at least n different Anosov flows that are not orbit equivalent. Our construction is reminiscent of the Thurston-Handel construction: we cut a geodesic flow on a surface of constant negative curvature into two pieces, modify the flow in each piece by pulling back to finite covers, and glue together compatible pairs of pullback flows along their boundary tori to get many distinct flows on the resulting graph manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源