论文标题
改进的深点云几何压缩
Improved Deep Point Cloud Geometry Compression
论文作者
论文摘要
点云已被认为是3D含量的关键数据结构,在许多应用中至关重要的是虚拟和混合现实,自主驾驶,文化遗产等。在本文中,我们提出了一组贡献,以改善深点云压缩,即使用用于入围拷贝编码的量表超高模型;采用更深入的变换;局部损失的平衡重量不同;用于解码的最佳阈值;和顺序模型训练。此外,我们还提供了有关这些因素中每个因素的影响的广泛消融研究,以便更好地了解它们为何改善RD性能。当使用点对点(点对上的)度量时,提出的改进的最佳组合分别比G-PCC Trisoup和OCTREE的BD-PSNR分别获得了5.50(6.48)dB和6.84(5.95)dB的OCTREE。代码可在https://github.com/mauriceqch/pcc_geo_cnn_v2上找到。
Point clouds have been recognized as a crucial data structure for 3D content and are essential in a number of applications such as virtual and mixed reality, autonomous driving, cultural heritage, etc. In this paper, we propose a set of contributions to improve deep point cloud compression, i.e.: using a scale hyperprior model for entropy coding; employing deeper transforms; a different balancing weight in the focal loss; optimal thresholding for decoding; and sequential model training. In addition, we present an extensive ablation study on the impact of each of these factors, in order to provide a better understanding about why they improve RD performance. An optimal combination of the proposed improvements achieves BD-PSNR gains over G-PCC trisoup and octree of 5.50 (6.48) dB and 6.84 (5.95) dB, respectively, when using the point-to-point (point-to-plane) metric. Code is available at https://github.com/mauriceqch/pcc_geo_cnn_v2 .