论文标题
关于集合(线性高斯)Kalman-Bucy滤波的数学理论
On the Mathematical Theory of Ensemble (Linear-Gaussian) Kalman-Bucy Filtering
论文作者
论文摘要
这篇综述的目的是详细概述集合Kalman-Bucy滤波的理论,以连续时间,线性高斯信号和观察模型。我们提出了一个方程式系统,该系统描述了单个颗粒的流动和样品协方差的流以及样品平均值中的平均值。我们将这些方程式及其特性考虑在许多流行的集合Kalman过滤变体中。鉴于这些方程式,我们研究了它们渐近收敛到最佳贝叶斯过滤器。我们还详细研究了一些非反应时间均匀的波动,稳定性和收缩结果,这些结果是样本协方差和样品平均值(或样本误差轨迹)。我们专注于可测试的信号/观察模型条件,并适合完全不稳定的(潜在)信号模型。我们讨论了这些结果表征过滤器行为的相关性和重要性,例如它是信号跟踪性能,我们将这些结果与Kalman-Bucy滤波中稳定性的经典研究中的结果进行了对比。我们还提供了一种新颖的(和负)结果,证明了Bootstrap粒子滤波器甚至无法跟踪最基本的不稳定潜在信号,而与Ensemble Kalman滤波器(和最佳滤镜)相比,也无法跟踪最基本的潜在潜在信号。我们提供直觉,即主要结果如何扩展到非线性信号模型,并评论其对实践中某些典型滤波器行为的后果,例如灾难性差异。
The purpose of this review is to present a comprehensive overview of the theory of ensemble Kalman-Bucy filtering for continuous-time, linear-Gaussian signal and observation models. We present a system of equations that describe the flow of individual particles and the flow of the sample covariance and the sample mean in continuous-time ensemble filtering. We consider these equations and their characteristics in a number of popular ensemble Kalman filtering variants. Given these equations, we study their asymptotic convergence to the optimal Bayesian filter. We also study in detail some non-asymptotic time-uniform fluctuation, stability, and contraction results on the sample covariance and sample mean (or sample error track). We focus on testable signal/observation model conditions, and we accommodate fully unstable (latent) signal models. We discuss the relevance and importance of these results in characterising the filter's behaviour, e.g. it's signal tracking performance, and we contrast these results with those in classical studies of stability in Kalman-Bucy filtering.We also provide a novel (and negative) result proving that the bootstrap particle filter cannot track even the most basic unstable latent signal, in contrast with the ensemble Kalman filter (and the optimal filter). We provide intuition for how the main results extend to nonlinear signal models and comment on their consequence on some typical filter behaviours seen in practice, e.g. catastrophic divergence.