论文标题

心脏分割具有强大的解剖学保证

Cardiac Segmentation with Strong Anatomical Guarantees

论文作者

Painchaud, Nathan, Skandarani, Youssef, Judge, Thierry, Bernard, Olivier, Lalande, Alain, Jodoin, Pierre-Marc

论文摘要

卷积神经网络(CNN)在医学成像,尤其是医学图像细分方面取得了前所未有的成功。然而,尽管分割结果比以往任何时候都更接近Expert的变异性,但CNN也不能免疫产生解剖学不准确的分割,即使是在形状之前建立的。在本文中,我们提出了一个用于生成心脏图像分割图的框架,该框架保证尊重预定义的解剖标准,同时保持在专家间变异性内。我们方法背后的想法是使用训练有素的CNN,是否处理心脏图像,确定解剖学上令人难以置信的结果,并将这些结果扭曲到最接近的解剖学上有效的心脏形状。该翘曲过程是通过训练有素的变化自动编码器(CVAE)进行的,通过平稳但受约束的潜在空间来学习有效心脏形状的代表。使用此CVAE,我们可以将任何令人难以置信的形状投射到心脏潜在空间中,并将其转向最接近的正确形状。我们测试了短轴MRI以及顶部两腔视图超声图像的框架,这两种方式差异很大。使用我们的方法,CNN现在可以产生既在Expert变异性内且始终在解剖上合理的结果,而无需先前依靠形状。

Convolutional neural networks (CNN) have had unprecedented success in medical imaging and, in particular, in medical image segmentation. However, despite the fact that segmentation results are closer than ever to the inter-expert variability, CNNs are not immune to producing anatomically inaccurate segmentations, even when built upon a shape prior. In this paper, we present a framework for producing cardiac image segmentation maps that are guaranteed to respect pre-defined anatomical criteria, while remaining within the inter-expert variability. The idea behind our method is to use a well-trained CNN, have it process cardiac images, identify the anatomically implausible results and warp these results toward the closest anatomically valid cardiac shape. This warping procedure is carried out with a constrained variational autoencoder (cVAE) trained to learn a representation of valid cardiac shapes through a smooth, yet constrained, latent space. With this cVAE, we can project any implausible shape into the cardiac latent space and steer it toward the closest correct shape. We tested our framework on short-axis MRI as well as apical two and four-chamber view ultrasound images, two modalities for which cardiac shapes are drastically different. With our method, CNNs can now produce results that are both within the inter-expert variability and always anatomically plausible without having to rely on a shape prior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源