论文标题
通过有限的标记数据来学习电子商务目录中文本属性值的自动验证
Automatic Validation of Textual Attribute Values in E-commerce Catalog by Learning with Limited Labeled Data
论文作者
论文摘要
产品目录是电子商务网站的宝贵资源。在目录中,产品与多个属性相关联,其价值是短文本,例如产品名称,品牌,功能和风味。通常,个人零售商自我报告这些关键价值,因此不可避免地会包含嘈杂的事实。尽管现有的深层神经网络模型在两段文本之间进行了交叉检查,但其成功必须取决于大量质量标记的数据,这些数据在此验证任务中很难获得:产品涵盖了各种类别。为了应对上述挑战,我们提出了一种新型的元学习潜在可变方法,称为Metabridge,该方法可以从具有有限标记的数据的类别中学习可转移的知识,并捕获了没有标记的数据的从未见过的类别的不确定性。更具体地说,我们做出以下贡献。 (1)我们在几个射击学习环境中验证从各个类别验证产品的文本属性值的文本属性值的问题,并提出一个元学习的潜在变量模型,以共同处理从产品配置文件和文本属性值获得的信号。 (2)我们建议将元学习和潜在变量集成到统一模型中,以有效捕获各种类别的不确定性。 (3)我们在少数图学习环境中基于潜在变量模型提出了一个新颖的目标函数,从而确保了未标记的数据和标记的数据之间的分布一致性,并通过从学习分布中采样来防止过度适应。与最先进的方法相比,对数百个类别的实际电子商务数据集进行了广泛的实验,证明了Metabridge对文本属性验证及其出色性能的有效性。
Product catalogs are valuable resources for eCommerce website. In the catalog, a product is associated with multiple attributes whose values are short texts, such as product name, brand, functionality and flavor. Usually individual retailers self-report these key values, and thus the catalog information unavoidably contains noisy facts. Although existing deep neural network models have shown success in conducting cross-checking between two pieces of texts, their success has to be dependent upon a large set of quality labeled data, which are hard to obtain in this validation task: products span a variety of categories. To address the aforementioned challenges, we propose a novel meta-learning latent variable approach, called MetaBridge, which can learn transferable knowledge from a subset of categories with limited labeled data and capture the uncertainty of never-seen categories with unlabeled data. More specifically, we make the following contributions. (1) We formalize the problem of validating the textual attribute values of products from a variety of categories as a natural language inference task in the few-shot learning setting, and propose a meta-learning latent variable model to jointly process the signals obtained from product profiles and textual attribute values. (2) We propose to integrate meta learning and latent variable in a unified model to effectively capture the uncertainty of various categories. (3) We propose a novel objective function based on latent variable model in the few-shot learning setting, which ensures distribution consistency between unlabeled and labeled data and prevents overfitting by sampling from the learned distribution. Extensive experiments on real eCommerce datasets from hundreds of categories demonstrate the effectiveness of MetaBridge on textual attribute validation and its outstanding performance compared with state-of-the-art approaches.