论文标题
大化和球形功能
Majorization and Spherical Functions
论文作者
论文摘要
多数化是对实际媒介的部分顺序,在各种受试者中起着重要作用,从代数和组合学到概率和统计。在本文中,我们考虑了与任意根系$φ相关的大分化概念,并表明它在任何限制性根系$φ$ $ $ $ $上的球形函数值的自然表征。
Majorization is a partial order on real vectors which plays an important role in a variety of subjects, ranging from algebra and combinatorics to probability and statistics. In this paper, we consider a generalized notion of majorization associated to an arbitrary root system $Φ,$ and show that it admits a natural characterization in terms of the values of spherical functions on any Riemannian symmetric space with restricted root system $Φ.$