论文标题

基于新的 *r解决普通微分方程的视角

A novel *R-based perspective on solving ordinary differential equations

论文作者

Weber, Marcus

论文摘要

实际数字是在大学中教授的,与我们的连续体的概念相对应,尽管超元数位于实际数字之间``之间''。数字$ x + dx $,其中$ dx $应该是无限的数字,而$ x $真实的数字无限量接近$ x $,但``无限''远离所有其他实数。类似地:如果$ f'(x_0)$和$ f(x_0)$给出了可区分函数$ f:\ mathbb {r} \ rightarrow \ rightarrow \ mathbb {r} $ at $ x_0 \ in \ in \ mathBb {r} $ $ x_0 $。这些要点似乎是``无限的''。这是在数值数学中求解微分方程的概念问题。在本文中,我们将提出一种数值算法来解决非常简单的初始值问题。但是,范式的更改是,我们不会``离开''点$ x_0 $。求解普通的微分方程就像搜索``食谱''$ f $。我们将从\ Mathbb {r} $中找到$ x \ $ x \的这些配方,而是从$ x_0 $的``monad''中的特殊关系中学习它们。

The real numbers, it is taught at universities, correspond to our idea of a continuum, although the hyperreal numbers are located ``in between'' the real numbers. The number $x + dx$, where $dx$ should be an infinitesimal number and $x$ real, is infinitesimally close to $x$ but ``infinitely'' far away from all other real numbers. Analogously: If $f'(x_0)$ and $f(x_0)$ are given for a differentiable function $f:\mathbb{R}\rightarrow\mathbb{R}$ at $x_0\in\mathbb{R}$, we can not determine $f(x)$ at {\em any} point $x\in \mathbb{R}$ different from $x_0$. These points seem to be ``infinitely'' far away. That is one conceptual problem of solving differential equations in numerical mathematics. In this article, we will present a numerical algorithm to solve very simple initial value problems. However, the change of paradigm is, that we will not ``leave'' the point $x_0$. Solving ordinary differential equations is like searching for ``recipes'' $f$. Instead of trying to find these recipes for values $x\in\mathbb{R}$, we will learn them from special relations in the ``monad'' of $x_0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源