论文标题

使用卷积模型的金字塔波前传感器光学获得补偿

Pyramid wavefront sensor optical gains compensation using a convolutional model

论文作者

Chambouleyron, Vincent, Fauvarque, Olivier, Janin-Potiron, Pierre, Correia, Carlos, Sauvage, Jean-François, Schwartz, Noah, Neichel, Benoît, Fusco, Thierry

论文摘要

极大的望远镜在更广泛使用的Shack-Hartmann波前传感器(SHWFS)上选择了金字塔波前传感器(PYWFS),以执行其单个共轭自适应光学器件(SCAO)模式。 PYWFS是一种基于傅立叶过滤的传感器,已被证明在许多天文学应用中取得了非常成功。但是,它表现出非线性行为,在使用非零残留波前时会导致其灵敏度降低。这种所谓的光学增益(OG)效应降低了SCAO系统的紧密循环性能,并防止准确校正非通用路径畸变(NCPA)。在本文中,我们旨在使用快速而敏捷的策略来计算OG,以控制自适应光学封闭环系统中的PYWFS测量。使用基于卷积模型的PYFW的新型理论描述,我们能够分析闭环操作中PYWF的行为。该模型使我们能够探索残留波前误差对特定方面的影响,例如灵敏度和相关的OG。所提出的方法依赖于残留波前统计的知识,并可以自动估计当前OG。端到端数值模拟用于验证我们的预测并测试我们方法的相关性。我们证明,使用非侵入性策略,我们的方法提供了对OG的准确估计。该模型本身仅需要AO遥测数据来获取有关大气湍流的统计信息。此外,我们表明,通过仅使用当前油炸参数R_0和基本系统级特性的估计,可以估算OGS的精度小于10%。最后,我们强调了在NCPA补偿的情况下,OG估计的重要性。提出的方法应用于PYWFS。

Extremely Large Telescopes have overwhelmingly opted for the Pyramid wavefront sensor (PyWFS) over the more widely used Shack-Hartmann WaveFront Sensor (SHWFS) to perform their Single Conjugate Adaptive Optics (SCAO) mode. The PyWFS, a sensor based on Fourier filtering, has proven to be highly successful in many astronomy applications. However, it exhibits non-linearity behaviors that lead to a reduction of its sensitivity when working with non-zero residual wavefronts. This so-called Optical Gains (OG) effect, degrades the close loop performance of SCAO systems and prevents accurate correction of Non-Common Path Aberrations (NCPA). In this paper, we aim at computing the OG using a fast and agile strategy in order to control the PyWFS measurements in adaptive optics closed loop systems. Using a novel theoretical description of the PyFWS, which is based on a convolutional model, we are able to analytically predict the behavior of the PyWFS in closed-loop operation. This model enables us to explore the impact of residual wavefront error on particular aspects such as sensitivity and associated OG. The proposed method relies on the knowledge of the residual wavefront statistics and enables automatic estimation of the current OG. End-to-End numerical simulations are used to validate our predictions and test the relevance of our approach. We demonstrate, using on non-invasive strategy, that our method provides an accurate estimation of the OG. The model itself only requires AO telemetry data to derive statistical information on atmospheric turbulence. Furthermore, we show that by only using an estimation of the current Fried parameter r_0 and the basic system-level characteristics, OGs can be estimated with an accuracy of less than 10%. Finally, we highlight the importance of OG estimation in the case of NCPA compensation. The proposed method is applied to the PyWFS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源