论文标题

描述1D谐波晶体中热传导的离散和连续性基本解决方案:离散到核的极限和缓慢且速度的运动去耦

Discrete and continuum fundamental solutions describing heat conduction in 1D harmonic crystal: Discrete-to-continuum limit and slow-and-fast motions decoupling

论文作者

Gavrilov, Serge N.

论文摘要

在Sokolov等人的最新论文中。 (热和传质的Int。J。176,2021,121442)考虑了1D谐波晶体中的弹道热传播,并在数值上比较了Krivtsov引入的精确离散溶液的性能和弹道热方程的溶液。本说明的目的是证明后者连续基的基本解决方案可以正式获得为大渐近造物的缓慢时变成分,以在观察点上确切的离散解决方案。

In the recent paper by Sokolov et al. (Int. J. of Heat and Mass Transfer 176, 2021, 121442) ballistic heat propagation in 1D harmonic crystal is considered and the properties of the exact discrete solution and the solution of the ballistic heat equation introduced by Krivtsov are numerically compared. The aim of this note is to demonstrate that the latter continuum fundamental solution can be formally obtained as the slow time-varying component of the large-time asymptotics for the exact discrete solution on a moving point of observation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源