论文标题

Schrödinger方程在球体上的尖锐估计

Sharp Strichartz estimates for the Schrödinger equation on the sphere

论文作者

Cardona, Duván, Esquivel, Liliana

论文摘要

在这项贡献中,我们研究了与球体上与laplacian相关的Schrördinger方程,以尖锐的strichartz估计的形式。我们将使用纯粹使用[8]中证明的光谱投影(与球形谐波相关)的操作员规范的$ l^2 \ rightarrow l^p $频谱估算为我们的主要定理提供了简单的证明。在任意维度$ d \ geq 2 $的领域中,为初始数据建立了尖锐的规律性索引。

In this contribution we investigate the Schrördinger equation associated to the Laplacian on the sphere in the form of sharp Strichartz estimates. We will provided simple proofs for our main theorems using purely the $L^2\rightarrow L^p$ spectral estimates for the operator norm of the spectral projections (associated to the spherical harmonics) proved in [8]. A sharp index of regularity is established for the initial data in spheres of arbitrary dimension $d\geq 2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源