论文标题
几何形状和预贴框的全球方面
Global Aspects of Doubled Geometry and Pre-rackoid
论文作者
论文摘要
分析了C型支架和VAISMAN(公制,DFT)代数的整合问题,即是双场理论(DFT)的几何结构。我们引入了一个预贴剂作为无穷小代数结构的全局群样对象的概念。我们提出了几种实现前包装结构的实现。一种意识到,固定类动物的元素是由沿二线叶片中的叶子沿二线叶片的cotangent路径定义的。提出了另一个意识到DFT代数的形式指数图。我们表明,当施加了强大的DFT限制时,预贴片将减少为corkoid,这是Courant代数的整合。最后,对于物理应用,我们在三维拓扑模型中展示了(前)rackoid的实现。
The integration problem of a C-bracket and a Vaisman (metric, pre-DFT) algebroid which are geometric structures of double field theory (DFT) is analyzed. We introduce a notion of a pre-rackoid as a global group-like object for an infinitesimal algebroid structure. We propose that several realizations of pre-rackoid structures. One realization is that elements of a pre-rackoid are defined by cotangent paths along doubled foliations in a para-Hermitian manifold. Another realization is proposed as a formal exponential map of the algebroid of DFT. We show that the pre-rackoid reduces to a rackoid that is the integration of the Courant algebroid when the strong constraint of DFT is imposed. Finally, for a physical application, we exhibit an implementation of the (pre-)rackoid in a three-dimensional topological sigma model.