论文标题

ShapeFlow:3D形状之间可学习的变形

ShapeFlow: Learnable Deformations Among 3D Shapes

论文作者

Jiang, Chiyu "Max", Huang, Jingwei, Tagliasacchi, Andrea, Guibas, Leonidas

论文摘要

我们提出了ShapeFlow,这是一种基于流的模型,用于学习具有较大类内变化的整个3D形状的变形空间。 ShapeFlow允许学习一个多板的变形空间,该变形空间不可知,可以塑造拓扑,但可以保留精细的几何细节。与潜在矢量直接解码为形状的生成空间不同,变形空间将向量解码为连续流,该流可以将源形状朝目标降低。这样的空间自然允许分离几何样式(来自来源)和结构姿势(符合目标)。我们通过神经网络将几何形状之间的变形作为学习的连续流场,并表明可以保证这种变形具有理想的特性,例如是生物,即使是生物,免于自我交流或保存体积。我们说明了对各种下游应用的这种学习变形空间的有效性,包括通过变形,几何样式转移的形状产生,无监督的学习整个形状类别的一致参数化以及形状插值。

We present ShapeFlow, a flow-based model for learning a deformation space for entire classes of 3D shapes with large intra-class variations. ShapeFlow allows learning a multi-template deformation space that is agnostic to shape topology, yet preserves fine geometric details. Different from a generative space where a latent vector is directly decoded into a shape, a deformation space decodes a vector into a continuous flow that can advect a source shape towards a target. Such a space naturally allows the disentanglement of geometric style (coming from the source) and structural pose (conforming to the target). We parametrize the deformation between geometries as a learned continuous flow field via a neural network and show that such deformations can be guaranteed to have desirable properties, such as be bijectivity, freedom from self-intersections, or volume preservation. We illustrate the effectiveness of this learned deformation space for various downstream applications, including shape generation via deformation, geometric style transfer, unsupervised learning of a consistent parameterization for entire classes of shapes, and shape interpolation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源