论文标题

Bernoulli方案的组合编码和Young Tableaux的渐近行为

Combinatorial encoding of Bernoulli schemes and the asymptotic behavior of Young tableaux

论文作者

Vershik, Anatoly

论文摘要

我们考虑了Bernoulli方案完全可解码的组合编码的两个示例:通过Weyl Sublices编码和更复杂的编码通过RSK(Robinson--Schensted-nuth)对应关系。在第一种情况下,解释性是一个非常简单的事实,而在第二种情况下,这是D. romik和P.〜śniady获得的非平凡结果,并基于论文〜\ cite {kv},\ cite {vk}等。我们从可衡量分区理论的角度评论证明;使用代表理论和广义二元性二元性的另一个证据将在其他地方介绍。我们还研究了$ P $ -TableAux上Bernoulli变量的新动态,并找到这些tableaux的限制3D形。

We consider two examples of a fully decodable combinatorial encoding of Bernoulli schemes: the encoding via Weyl simplices and the much more complicated encoding via the RSK (Robinson--Schensted--Knuth) correspondence. In the first case, the decodability is a quite simple fact, while in the second case, this is a nontrivial result obtained by D.~Romik and P.~Śniady and based on the papers~ \cite{KV}, \cite{VK}, and others. We comment on the proofs from the viewpoint of the theory of measurable partitions; another proof, using representation theory and generalized Schur--Weyl duality, will be presented elsewhere. We also study a new dynamics of Bernoulli variables on $P$-tableaux and find the limit 3D-shape of these tableaux.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源