论文标题
高分辨率的贝叶斯图与未观察到的触发事件的压倒性危险
High-resolution Bayesian mapping of landslide hazard with unobserved trigger event
论文作者
论文摘要
滑坡危险的统计模型可以通过使用高空间分辨率可用的地貌协变量来映射风险因素和滑坡发生强度。但是,通常未直接观察到触发事件的空间分布(例如降水量或地震)。在本文中,我们开发了使用不同类型的log-gaussian cox过程的贝叶斯空间分层模型,以用于滑坡的点模式。从竞争性的基线模型开始,该模型通过在坡度单位分辨率下通过空间随机效应捕获未观察到的降水触发,我们探索了新型的复杂模型结构,这些结构将在小空间尺度上以及非线性或空间变化的协变量效应中考虑到小时的事件。对于2009年在意大利西西里岛大约有4000个降水触发的山体滑坡的事件,我们展示了如何使用集成的嵌套拉普拉斯近似(INLA)有效地适应我们提出的模型,并严格地比较了从统计和应用的角度比较模型的性能。在这种情况下,我们认为模型比较不应基于单个标准,并且各种复杂性的不同模型可能会为相同应用问题的互补方面提供见解。在我们的应用程序中,我们的模型被发现具有相同的空间预测性能,这意味着成功预测的关键是包含一个斜率单元解决的随机效应,以捕获降水触发。有趣的是,与太空变化的斜率效应的简约配方反映了降水触发的物理解释:在触发较弱的亚地区,斜坡陡度大多是无关紧要的。
Statistical models for landslide hazard enable mapping of risk factors and landslide occurrence intensity by using geomorphological covariates available at high spatial resolution. However, the spatial distribution of the triggering event (e.g., precipitation or earthquakes) is often not directly observed. In this paper, we develop Bayesian spatial hierarchical models for point patterns of landslide occurrences using different types of log-Gaussian Cox processes. Starting from a competitive baseline model that captures the unobserved precipitation trigger through a spatial random effect at slope unit resolution, we explore novel complex model structures that take clusters of events arising at small spatial scales into account, as well as nonlinear or spatially-varying covariate effects. For a 2009 event of around 4000 precipitation-triggered landslides in Sicily, Italy, we show how to fit our proposed models efficiently using the integrated nested Laplace approximation (INLA), and rigorously compare the performance of our models both from a statistical and applied perspective. In this context, we argue that model comparison should not be based on a single criterion, and that different models of various complexity may provide insights into complementary aspects of the same applied problem. In our application, our models are found to have mostly the same spatial predictive performance, implying that key to successful prediction is the inclusion of a slope-unit resolved random effect capturing the precipitation trigger. Interestingly, a parsimonious formulation of space-varying slope effects reflects a physical interpretation of the precipitation trigger: in subareas with weak trigger, the slope steepness is shown to be mostly irrelevant.