论文标题

subconvex以$ \ textrm {gl(3)} \ times \ textrm {gl(2)} $ $ $ $ l $ - 功能:$ \ textrm {gl(3)} $ - 光谱方面

Subconvex bound for $\textrm{GL(3)} \times \textrm{GL(2)}$ $L$-functions: $\textrm{GL(3)}$-spectral aspect

论文作者

Kumar, Sumit, Mallesham, Kummari, Singh, Saurabh Kumar

论文摘要

令$ \ $ ϕ $为$ \ mathrm {sl(3,\ mathbb {z})} $的hecke-maass cusp表格,带有langlands parameters $({\ bf t} _ {i} _ {i} _ {i})_ {i = 1} $ \ mathrm {sl(2,\ mathbb {z})} $。在本文中,我们证明了以下子凸界 $ l \ left(ϕ \ times f,1/2 \ right)\ ll_ {f,ε} 对于$ \ mathrm {gl(3)} $ - 频谱方面,$({\ bf t} _ {i})_ {i = 1}^{3} $满足 $$ | {\ bf t} _ {3} - {\ bf t} _ {2} | \ asymp t^{1-ξ},\ quad \,{\ bf t} _ {i} 使用$ξ$一个真实的数字,因此$ 0 <ξ<1/2 $。

Let $ϕ$ be a Hecke-Maass cusp form for $\mathrm{SL(3, \mathbb{Z})}$ with Langlands parameters $({\bf t}_{i})_{i=1}^{3}$ and $f$ be a holomorphic or Hecke-Maass cusp form for $\mathrm{SL(2,\mathbb{Z})}$. In this article, we prove the following subconvex bound $$ L\left(ϕ\times f, 1/2\right) \ll_{f,ε} T^{ \frac{3}{2}-δ_ξ+ε},\ δ_ξ=\min\{ξ/4, \, (1-2ξ)/4 \}, $$ for the central value $ L\left(ϕ\times f, 1/2\right) $ in the $\mathrm{GL(3)}$-spectral aspect, where $({\bf t}_{i})_{i=1}^{3}$ satisfies $$|{\bf t}_{3} - {\bf t}_{2}| \asymp T^{1-ξ}, \quad \, {\bf t}_{i} \asymp T, \quad \, \, i=1,\,2,\,3,$$ with $ξ$ a real number such that $0 < ξ<1/2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源