论文标题

饱和$α-Z $ renyi相对熵的数据处理不等式

Saturating the Data Processing Inequality for $α-z$ Renyi Relative Entropy

论文作者

Chehade, Sarah

论文摘要

已经显示出$α-Z $ r {é} NYI相对熵满足数据处理不等式(DPI)的一定范围$α$的s和$ z $的s。此外,该范围完全以Zhang为特征。我们证明,每当$ 1 <α\ leq 2 $和$ \fracα{2} \ leq z \ leq z \leqα$时,我们证明了$α-Z $ r {é} NYI相对熵的DPI的必要条件和代数足够的条件。此外,每当$α= z $时,这些条件会重合。

It has been shown that the $α-z$ R{é}nyi relative entropy satisfies the Data Processing Inequality (DPI) for a certain range of $α$'s and $z$'s. Moreover, the range is completely characterized by Zhang in `20. We prove necessary and algebraically sufficient conditions to saturate the DPI for the $α-z$ R{é}nyi relative entropy whenever $1<α\leq 2$ and $\fracα{2}\leq z\leqα$. Moreover, these conditions coincide whenever $α=z$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源