论文标题
回声:基于用户反馈的隐式身份验证系统
EchoIA: Implicit Authentication System Based on User Feedback
论文作者
论文摘要
隐式身份验证(IA)通过利用从各种传感器中采样的行为数据来透明地验证用户。通过不断分析当前用户的行为来识别非法用户,IA向智能设备添加了另一层保护。由于人类行为的多样性,现有的研究工作倾向于同时利用许多不同的功能来识别用户,这效率较低。无关的功能可能会增加系统延迟并降低身份验证的准确性。但是,动态选择适合每个用户的最佳功能(个人功能)需要进行大量计算,尤其是在真实环境中。在本文中,我们提出了Echoia,通过使用用户反馈来找到具有少量计算的个人功能。在身份验证阶段,我们的方法保持透明度,这是IA的主要优势。在过去的两年中,我们进行了全面的实验来评估回声。我们在身份验证准确性和效率方面将其与其他最先进的IA方案进行了比较。实验结果表明,与其他IA方案相比,Echoia具有更好的身份验证精度(93 \%),能耗(电池寿命为23小时)。
Implicit authentication (IA) transparently authenticates users by utilizing their behavioral data sampled from various sensors. Identifying the illegitimate user through constantly analyzing current users' behavior, IA adds another layer of protection to the smart device. Due to the diversity of human behavior, the existing research works tend to simultaneously utilize many different features to identify users, which is less efficient. Irrelevant features may increase system delay and reduce the authentication accuracy. However, dynamically choosing the best suitable features for each user (personal features) requires a massive calculation, especially in the real environment. In this paper, we proposed EchoIA to find personal features with a small amount of calculation by utilizing user feedback. In the authentication phase, our approach maintains the transparency, which is the major advantage of IA. In the past two years, we conducted a comprehensive experiment to evaluate EchoIA. We compared it with other state-of-the-art IA schemes in the aspect of authentication accuracy and efficiency. The experiment results show that EchoIA has better authentication accuracy (93\%) and less energy consumption (23-hour battery lifetimes) than other IA schemes.