论文标题
可以通过结合古典中心来普遍识别顶级影响者
Top influencers can be identified universally by combining classical centralities
论文作者
论文摘要
信息流,意见和流行病分布在结构化网络上。当使用单个节点中心性指标预测哪些节点将成为大型网络中的顶级影响者或散布器之一时,没有任何一个中心性能始终具有良好的排名能力。我们表明,使用两个或多个中心作为输入的统计分类器始终如一地预测许多多样化的静态现实世界拓扑。在统计学上,某些核心对在统计学上的界限特别良好,在顶级散布器和其他散布之间的边界:衡量节点邻域大小的当地核心受益于增加全球中心性,例如特征向量的中心性,紧密度或核心数量。这是直觉的,因为当地的中心性可能会排在一个位于密集但周围区域的一些节点,但这种情况是,在这种情况下,额外的全球中心性指标可以通过更中心的节点来确定优先位置。选择为超级散布的节点通常会共同最大化两个中心的值。由于中心性指标之间的相互作用,具有七个经典指标的训练分类器导致本研究的网络中的平均精度函数(0.995)几乎最大。
Information flow, opinion, and epidemics spread over structured networks. When using individual node centrality indicators to predict which nodes will be among the top influencers or spreaders in a large network, no single centrality has consistently good ranking power. We show that statistical classifiers using two or more centralities as input are instead consistently predictive over many diverse, static real-world topologies. Certain pairs of centralities cooperate particularly well in statistically drawing the boundary between the top spreaders and the rest: local centralities measuring the size of a node's neighbourhood benefit from the addition of a global centrality such as the eigenvector centrality, closeness, or the core number. This is, intuitively, because a local centrality may rank highly some nodes which are located in dense, but peripheral regions of the network---a situation in which an additional global centrality indicator can help by prioritising nodes located more centrally. The nodes selected as superspreaders will usually jointly maximise the values of both centralities. As a result of the interplay between centrality indicators, training classifiers with seven classical indicators leads to a nearly maximum average precision function (0.995) across the networks in this study.