论文标题

基于样品自动腔的单位根测试

Testing for unit roots based on sample autocovariances

论文作者

Chang, Jinyuan, Cheng, Guanghui, Yao, Qiwei

论文摘要

我们针对单位根替代$ H_1 $提出了针对固定零假设$ h_0 $的新单元根测试。我们的方法是非参数,因为$ H_0 $仅假定相关过程为$ i(0)$,而无需指定任何参数表格。新的测试基于以下事实:样本自动助力函数(ACVF)以$ i(0)$过程收敛到有限的ACVF,而它则与单位根的过程相差无限。因此,新的测试拒绝$ H_0 $对于样本ACVF的较大值。为了应对技术挑战“大大有多大”,我们将样本分开,并建立适当的正常近似测试统计统计量。新测试统计量的实质性歧视功率源于以下事实:它在$ h_0 $以下的有限价值在$ h_1 $下方的无限范围内分开。这使我们能够将测试的临界值截断,以使其与渐近功率一致。它还减轻了由于样本分解而导致的电力损失。该测试以用户友好的R功能实现。

We propose a new unit-root test for a stationary null hypothesis $H_0$ against a unit-root alternative $H_1$. Our approach is nonparametric as $H_0$ only assumes that the process concerned is $I(0)$ without specifying any parametric forms. The new test is based on the fact that the sample autocovariance function (ACVF) converges to the finite population ACVF for an $I(0)$ process while it diverges to infinity for a process with unit-roots. Therefore the new test rejects $H_0$ for the large values of the sample ACVF. To address the technical challenge `how large is large', we split the sample and establish an appropriate normal approximation for the null-distribution of the test statistic. The substantial discriminative power of the new test statistic is rooted from the fact that it takes finite value under $H_0$ and diverges to infinity under $H_1$. This allows us to truncate the critical values of the test to make it with the asymptotic power one. It also alleviates the loss of power due to the sample-splitting. The test is implemented in a user-friendly R-function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源