论文标题
潮湿深对流的渐近学I:精制尺度和自我维持的上升
Asymptotics for moist deep convection I: Refined scalings and self-sustaining updrafts
论文作者
论文摘要
潮湿的过程是大气动力学最重要的驱动因素之一,尺度分析和渐近学是理论气象学的基石。因此,考虑到系统尺度分析中的潮湿过程对于该领域似乎很重要。 Klein&Majda(TCFD,20,525--552,(2006))提出了一种缩放制度,用于将潮湿的体积微物理封闭掺入热带深度对流的多尺度渐近分析中。此处进行了完善,以允许理想气体的混合物,并与更通用的多个尺度建模框架建立大气流的框架。深狭窄的上下气流,所谓的“热塔”,构成了大规模风暴系统的主要构件。在新的缩放制度的示例应用中,这里对它们进行了分析。在垂直对流(或塔生命周期)时间尺度上考虑了单个准二等柱云。精制的渐近缩放制度对于此示例至关重要,因为它揭示了一种自我维持此类上升气流的新机制。即使对于强烈的对流势能(CAPE),在降水存在下也发现了浮力的垂直平衡。这种平衡引起了垂直速度的诊断方程,并负责产生自我维持的平衡上升气流。时间依赖性上升结构在汉密尔顿 - 雅各比方程中编码,以进行沉淀混合比。该方程式的数值解决方案表明,自我维持的上升气流可能会强烈增强热塔的生命周期。
Moist processes are among the most important drivers of atmospheric dynamics,and scale analysis and asymptotics are cornerstones of theoretical meteorology. Accounting for moist processes in systematic scale analyses therefore seems of considerable importance for the field. Klein & Majda (TCFD, 20, 525--552, (2006)) proposed a scaling regime for the incorporation of moist bulk microphysics closures in multiscale asymptotic analyses of tropical deep convection. This regime is refined here to allow for mixtures of ideal gases and to establish consistency with a more general multiple scales modelling framework for atmospheric flows. Deep narrow updrafts, so-called "hot towers", constitute principal building blocks of larger scale storm systems. They are analysed here in a sample application of the new scaling regime. A single quasi-onedimensional columnar cloud is considered on the vertical advective (or tower life cycle) time scale. The refined asymptotic scaling regime is essential for this example as it reveals a new mechanism for the self-sustainance of such updrafts. Even for strongly positive convectively available potential energy (CAPE), a vertical balance of buoyancy forces is found in the presence of precipitation. This balance induces a diagnostic equation for the vertical velocity and it is responsible for the generation of self-sustained balanced updrafts. The time dependent updraft structure is encoded in a Hamilton-Jacobi equation for the precipitation mixing ratio. Numerical solutions of this equation suggest that the self-sustained updrafts may strongly enhance hot tower life cycles.