论文标题
可符合的分数等温气体球
Conformable Fractional Isothermal Gas Spheres
论文作者
论文摘要
等温气球众所周知,是对天体物理学,物理,化学和工程中许多问题进行建模的强大工具。这个奇异的微分方程不是精确的解决方案,仅通过数值和近似方法解决。在本文和牛顿静水平衡的框架内,我们为分数等温气球开发了一般的分析公式。为了获得质量,半径和密度的分析表达式,除了分数等温气球外,我们使用了符合符合的分数计算。使用系列扩展方法,我们获得了一般复发关系,这使我们能够确定串联系数。串联解决方案与分数参数α= 1的数值解决方案的比较对于尺寸参数最高为x = 3.2,超出了该值,串联分流。我们应用了Euler-Abel和Pade Techniques的组合来加速该系列,因此加速串联收敛到数值所需的值。我们分析了中子星的典型模型的一些物理参数,例如不同模型的质量 - 拉迪乌斯关系,密度和压力比。我们发现,在经过改进的Rienmann-Liouville衍生物以及整数的背景下,当前的中子星的当前模型的体积和质量都比这两个恒星较小。
The isothermal gas sphere is well known as a powerful tool to model many problems in astrophysics, physics, chemistry, and engineering. This singular differential equation has not an exact solution and solved only by numerical and approximate methods. In the present paper and within the framework of the Newtonian hydrostatic equilibrium, we have developed general analytical formulations for the fractional isothermal gas sphere. To obtain analytical expressions for mass, radius, and density, besides the fractional isothermal gas sphere, we used the conformable fractional calculus. Using the series expansion method, we obtained a general recurrences relation, which allows us to determine the series coefficients. The comparison of the series solution with the numerical ones for the fractional parameter α=1 is good for dimensional parameters up to x=3.2, beyond this value, the series diverges. We applied a combination of Euler-Abel and Pade techniques to accelerate the series, therefore accelerated series converge to the numerical desired value. We analyzed some physical parameters of a typical model of the neutron stars such as the mass-radius relation, density, and pressure ratio for different models. We found that the current models of the conformable neutron stars had smaller volumes and masses than both stars in the context of modified Rienmann-Liouville derivatives as well as the integer one.