论文标题
非平稳ruijsenaars功能的基本属性
Basic Properties of Non-Stationary Ruijsenaars Functions
论文作者
论文摘要
对于任何可变的数字,最近将非平稳的Ruijsenaars功能作为自然概括,是对三角ruijsenaars模型的明确已知的渐近溶液的自然概括,并且猜想这种非固定的Ruijsenaars函数提供了椭圆形Ruijsenaars模型的明确解决方案。我们介绍了非平稳的Ruijsenaars功能的替代序列表示,我们证明了这些系列融合。我们还介绍了称为$ {\ Mathcal t} $的新型差异操作员,正如我们在三角限制中所证明的那样,在一般情况下,我们在非平稳的Ruijsenaars函数上对角度行动。
For any variable number, a non-stationary Ruijsenaars function was recently introduced as a natural generalization of an explicitly known asymptotically free solution of the trigonometric Ruijsenaars model, and it was conjectured that this non-stationary Ruijsenaars function provides an explicit solution of the elliptic Ruijsenaars model. We present alternative series representations of the non-stationary Ruijsenaars functions, and we prove that these series converge. We also introduce novel difference operators called ${\mathcal T}$ which, as we prove in the trigonometric limit and conjecture in the general case, act diagonally on the non-stationary Ruijsenaars functions.